Kolmogorov Complexity and Strong Approximation of Brownian Motion
نویسنده
چکیده
Brownian motion and scaled and interpolated simple random walk can be jointly embedded in a probability space in such a way that almost surely, the n-step walk is within a uniform distance O(n−1/2 log n) of the Brownian path, for all but finitely many positive integers n. Almost surely, this n-step walk will be incompressible in the sense of Kolmogorov complexity, and all Martin-Löf random paths of Brownian motion have such an incompressible close approximant. This strengthens a result of Asarin, who obtained instead the bound O(n−1/6 log n). The result cannot be improved to o(n−1/2 √ log n).
منابع مشابه
Kolmogorov complexity and the geometry of Brownian motion
In this paper, we continue the study of the geometry of Brownian motions which are encoded by Kolmogorov-Chaitin random reals (complex oscillations). We unfold Kolmogorov-Chaitin complexity in the context of Brownian motion and specifically to phenomena emerging from the random geometric patterns generated by a Brownian motion.
متن کاملStrong Approximation of Brownian Motion
Simple random walk and Brownian motion are two strongly interconnected mathematical concepts. They are widely involved in not only pure math, but also in many other scientific fields. In this paper I will first introduce and define some basic concepts of discrete-time random walk. Then I will construct Brownian Motion with some basic properties, and use a method called the strong approximation ...
متن کاملFourier spectra of measures associated with algorithmically random Brownian motion
Abstract. In this paper we study the behaviour at infinity of the Fourier transform of Radon measures supported by the images of fractal sets under an algorithmically random Brownian motion. We show that, under some computability conditions on these sets, the Fourier transform of the associated measures have, relative to the Hausdorff dimensions of these sets, optimal asymptotic decay at infini...
متن کاملAPPROXIMATION SOLUTION OF TWO-DIMENSIONAL LINEAR STOCHASTIC FREDHOLM INTEGRAL EQUATION BY APPLYING THE HAAR WAVELET
In this paper, we introduce an efficient method based on Haar wavelet to approximate a solutionfor the two-dimensional linear stochastic Fredholm integral equation. We also give an example to demonstrate the accuracy of the method.
متن کاملCompression and Diffusion: A Joint Approach to Detect Complexity
The adoption of the Kolmogorov-Sinai (KS) entropy is becoming a popular research tool among physicists, especially when applied to a dynamical system fitting the conditions of validity of the Pesin theorem. The study of time series that are a manifestation of system dynamics whose rules are either unknown or too complex for a mathematical treatment, is still a challenge since the KS entropy is ...
متن کامل